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ABSTRACT

This paper introduces a novel formulation for optimization of the
BESS (battery energy storage system) problem, a crucial compo-
nent for driving renewable energy production to profitability. We
review the existing literature on several optimization methods and
make a case for the need of this novel MDP formulation that will
be a foundation for learning from human demonstrations and feed-
back, prioritizing different constraints and real-world situations in
addition to optimizing for profitability.
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1 INTRODUCTION

In the pursuit of a sustainable and resilient energy future, the in-
tegration of energy storage solutions, alongside renewable energy
sources, such as solar and wind, has become paramount. “Storage
reduces total carbon dioxide emissions from the electricity system
by utilizing overgeneration from zero-marginal emissions sources
such as wind and solar to replace generation from the coal and
natural gas fleet” [13].

The emergence of Battery Energy Storage Systems (BESS) has
played a pivotal role in addressing this challenge, offering a means
to store excess energy during periods of high production and re-
leasing it during times of increased demand. Optimizing BESS is a
challenge in itself, involving the navigation of the intricate interplay
of factors such as avoiding energy waste, meeting demand shortfalls,
and maximizing revenue in volatile open energy markets, through
long-term energy acquisition contracts such as pre-purchase agree-
ments (PPA?) or participating in global grid stability with mecha-
nisms such as frequency control ancillary services (FCAS?). Figure
1 describes a model of the system.

A significant complication arises from the unpredictability of
external factors crucial to this optimization process, namely weather
patterns that influence solar and wind energy production, context-
driven variations in energy consumption, and fluctuating prices in
energy markets similar to stock markets. Balancing these factors is
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further complicated by the multiplicity of objectives. For instance,
it might be financially prudent to forego fulfilling a PPA in favor of
a more lucrative open market option, but this might impact future
contract negotiations. The delicate trade-offs extend to decisions
such as exceeding recommended charging cycles of a battery system
to enhance revenue, which might reduce its lifetime.

Navigating this multifaceted optimization challenge often falls
on human operators, who possess a nuanced understanding of
the context and are empowered to make critical judgment calls.
A robust BESS optimization system, therefore, should not only be
sophisticated in its algorithms but also be bidirectional, seamlessly
incorporating human operator feedback into its decision-making
processes.

In recent years, techniques to take human feedback into account
have been developed on top of the reinforcement learning (RL)
framework, namely the reinforcement learning from human feed-
back (RLHF) family of algorithms [8, 18]. In this work, we take a first
step towards this direction by demonstration of the applicability of
RL based methods to the BESS optimization problem.

We review the existing literature and propose a novel Markov
decision process (MDP) formulation for the BESS system. We intro-
duce an open-source environment and establish different baseline
algorithms including heurisitc, reinforcement learning, and imi-
tation learning algorithms. We foresee an active community of
developers and researchers pushing the frontiers of this novel sys-
tem to reduce carbon dioxide emissions and make clean energy
more profitable.

2 RELATED WORK

With the increasing global adoption of renewable energy sources,
driven by their inherent variability influenced by weather con-
ditions, electricity markets are experiencing increased volatility.
Consequently, there is an increasing need to develop accurate simu-
lations of power plants that participate in these markets. Such simu-
lations facilitate the exploration of power generation management
strategies aimed at achieving a more resilient power generation
system, leveraging on-site power storage facilities to better align
with market demand profiles. This tool is essential to maximize the
profitability of renewable energy producers, thus stimulating fur-
ther growth in this sector in conjunction with other conventional
power generation methods.
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Figure 1: Solar energy production & storage simplified system diagram. Solar panels generate direct current (DC) electricity
from sunlight (1), which is combined with the charge / discharge power of the batteries (2), then converted to alternating
current (AC) electricity by inverters (3). AC electricity can then be sent to the power grid (4) and sold on the energy market.
The introduction of batteries enables the produced energy to be stored to be sold later on, e.g. when the demand, and hence
the price, is higher. A plant or portfolio of plants might have power generation commitments under certain power purchase
agreements, there might be government incentives for green energy generation, participation in providing ancillary services
for grid stabilization, and finally benefit from the dynamic spot price electricity market.

Formulating a mathematical problem to maximize the profit of a
power plant entails integrating all pertinent aspects of the energy
balance, encompassing electricity production and consumption
dynamics, alongside associated supply and sale costs. The objec-
tive function typically quantifies the disparity between income
and costs, subject to technical constraints governing the system’s
variables. Conventionally, addressing this optimization problem
involves using classical optimization techniques, including linear
programming [1], [22], mixed-integer linear programming [20], [5],
[28], nonlinear programming [3], [14] and mixed-integer nonlinear
programming [23], [26].

Implementing these optimization strategies offers simplicity and
rapid execution to identify optimal solutions. Presently, mainstream
computational software incorporates proficient solvers capable
of efficiently handling mixed-integer linear problems. However,
challenges arise when non-linear constraints are introduced into
the power plant optimization problem, potentially resulting in non-
convex feasible regions and complicating resolution. Some studies
adopt various mathematical and heuristic methodologies to tackle
these intricacies.

These mathematical methods attempt to converge towards op-
timal solutions, a crucial aspect of effectively managing energy
resources. In linear programming models, the simplex method [24],
[4] emerges as the preferred approach due to its broad applicability,
ease of implementation, and computational efficiency. Conversely,
for integer programming models, branch-and-bound techniques
[17], [21] are predominantly used, allowing an intelligent search
for optimal solutions by systematically evaluating feasible integer
solutions while considering constraints and bounds. However, due
to the complexity and computational demands of these methods,

some studies advocate linearizing model equations before solving
them.

Heuristic methods, on the other hand, such as Particle Swarm
Optimization [23], [11] and Genetic Algorithms [27], offer efficient
solutions for energy resource optimization. Particle swarm guides
particles in the search space toward optimal solutions with mini-
mal parameter adjustment. Genetic algorithms simulate biological
evolution and natural selection, providing flexibility and exploring
solution spaces intelligently. Selecting the appropriate parameters
of the algorithm is crucial to achieve satisfactory results. However,
these methods may not guarantee optimal results.

Deep reinforcement learning (DRL) is an alternative route to
pursue to optimize power plant operations in renewable energy
markets. Unlike traditional optimization techniques, which rely
heavily on predefined models and assumptions, DRL learns directly
from interactions with the environment, enabling it to adapt and
improve over time. Compared to the classical optimization methods
reviewed above, DRL approaches can learn from historical data, are
self-adaptable, and learn a good control policy even in a complex
environment of optimizing battery energy trading while limiting
degradation costs using Deep Q-Learning (DQN) [7]. This inherent
flexibility allows DRL to navigate dynamic and uncertain conditions
more effectively, potentially unlocking new insights and strategies
to optimize power plant operations in renewable energy markets.
Double DQN was used in another study [6] to improve the overop-
timistic value estimates of DQN by decoupling the selection from
the evaluation of an action using a second neural network.

To broaden the action space of the DRL agents from discrete to
continuous, necessary for tasks like adjusting battery charge or dis-
charge power, policy gradient techniques are being employed. The



deep deterministic policy gradient method [15] initially facilitated
the handling of such action spaces and has been further refined
by the DRL research community since its inception to achieve bet-
ter stability and performance. In their study, Harrold et al. [10]
employed Rainbow DQN to oversee battery operations in a micro-
grid, improving energy arbitrage through solar and wind energy
utilization, while integrating real-world demand, renewable gener-
ation and dynamic energy pricing sourced from wholesale markets,
achieving superior performance compared to DDPG and a linear
programming model with discrete optimization. Recently, these
improved algorithms have been applied to the power management
problem. [25] used the soft actor-critic (SAC), twin-delayed deep
deterministic policy gradient (TD3), and proximal policy optimiza-
tion (PPO) to control potentially millions of small-scale assets in
private households. Their DRL algorithms outperformed common
heuristic algorithms and fell short of the results provided by linear
optimization, but by less than a thousandth of the simulation time.

In their study, [19] used battery storage for concurrent energy
arbitrage and frequency regulation services, to maximize total rev-
enue while adhering to physical constraints. By tackling the multi-
timescale challenge through nested Markov decision process sub-
models and implementing a co-optimization scheme, their method
effectively coordinated these actions. They used the TD3 with an
exploration noise decay approach in simulations conducted with
real-time electricity prices and regulation signal data, showcasing
superior performance compared to DQN.

The studies mentioned above showcased the superiority of DRL
in grasping the intricate patterns and uncertainties inherent in
power generation and market dynamics, outperforming classical
optimization techniques. What sets our work apart is the introduc-
tion of a novel MDP formulation designed to tackle the intricacies
of energy storage optimization. In doing this, we offer a methodical
and rigorous approach to model BESS operations, encapsulating
crucial variables such as energy production, consumption, mar-
ket dynamics, and storage constraints. This formulation not only
provides a holistic representation of the optimization challenge,
but also facilitates the development of streamlined algorithms for
BESS management. We advocate for the widespread adoption of
our formulation as the benchmark for future research efforts and in-
dustrial applications, as it lays a solid foundation for the promotion
of advancements in sustainable energy management practices.

3 ENVIRONMENT

Our BESS model consists of one renewable energy source and one
battery. The objective is to decide how much power should be sold
to the grid and to charge or discharge or leave the battery idle based
on the spot price and the LGC price. The system is represented in
Figure 1. We model the MDP as follows: Each time step corresponds
to an interval of 5 minutes. Each episode lasts for one day, that is,
288 time steps. The observation at each time step includes the power
generation and price values for the last hour, the current and the
next hour, the current state of the battery, the maximum allowable
charge and discharge of the battery, and the number of time steps
remaining until the horizon. The action is a scalar value that tells
the total amount of power sold to the grid; this is represented as the
edge (4) in Figure 1. If the action is less than the power generated,

the additional power generated is used to charge the battery; this is
represented as edge (2) in Figure 1. If this value is higher than the
generated power, the remaining power is obtained by discharging
the battery; this is represented as the edge (2) in Figure 1. However,
if at any point during training the action indicates that the battery
should be charged or discharged beyond its capacity, we classify it
as an illegal action, penalize it heavily, and terminate the episode.
During the evaluation phase, we emulate the real-world settings by
ignoring the illegal actions, as the inverter is disconnected when
the battery is full in the real world (digital twin).

3.1 Generate data of multiple levels of difficulty

The environment is equipped with the capability to generate data
(generated power and price) of varying levels of difficulty. This can
be used to train agents through curriculum learning. After inspect-
ing the real data of the generated power and the corresponding
prices in 10 different provinces in Australia, we generated synthetic
data, close to these real data.

At the foundational level, generated power is modeled by a cosine
wave, and price is modeled by a sine wave (as they are inversely
correlated — if the generated power is higher, the demand would
decrease, and hence the price is lower. On the other hand, if the
generated power is less, the demand will increase and the price
will be higher). When the value of the cosine wave is negative, it is
clipped to zero, indicating zero power production during the night.
For the corresponding duration, when the generated power is zero,
the price is fixed to its maximum value. The generated power values
are multiplied by a constant to match the distribution with the real
power generation values of a power plant. Similarly, the prices are
multiplied by a constant to make them similar to the actual prices.

Furthermore, a random noise sampled (at each time step) from a
uniform distribution (with a fixed amplitude) can be added to every
time step of the generated power and price values. Increasing the
amplitude will make the task harder.

The real power generation curves are characterized by unusual
spikes at arbitrary times. To mimic this behavior, we added the
provision of adding spikes, i.e., a random noise sampled from a
uniform distribution (but with much higher amplitude than the
amplitude for noise at each time step) after every few time steps,
again characterized by time period and additional position noise.

Finally, we also experimented with real power generation data.
Two sources have been used to get real data for this environment.
We chose to simulate a typical solar farm in Victoria state in Aus-
tralia with a 4.7 MW inverter, 8 MW solar panels, and an 11 MWh
battery. The price data was obtained from the Australian Energy
Market Operator (AEMO). The simulation has been performed with
the pvlib library [2] and solar data from the CAMS solar radiation
services with pvlib iotools[12].

3.2 Observation and Reward

In addition to the observation and reward described in Section 3,
the environment is equipped with several other options. A “mini
observation” only includes the price and power generated at the
current time step, the current state of the battery, and the number
of time steps remaining until the horizon. All of these values are



normalized by the corresponding normalization constants. An “ob-
servation with noisy forecasts” allows adding additional noise to
the forecast values for both prices and power generation.

Agents can be trained and evaluated with different types of
rewards. “just revenue” computes the revenue generated at each
time step by multiplying the price at the current time step with
the total power to the market grid. “Scaled revenue” scales the raw
revenue by dividing with an appropriate normalization constant.
“Scaled revenue and penalty” adds a penalty of -1 for illegal actions
in addition to the scaled revenue. “Survival” gives a reward of -1
for illegal actions and +1 for legal actions.

In our experiments, mini observation along with survival reward
were used as quick sanity checks to confirm that the agent can train.
We then used standard observation with scaled reward and penalty
for training. Both the scaled reward and penalty, and just revenue,
were plotted for evaluation episodes.

3.3 Design principles

All implementations (algorithms) have the same input and output
formats. For example, even though the output range of the TD3
algorithm (bounded by [-max-action, +max-action]) is different
from that of the heuristic or no-battery baseline (which has an actual
range of [0, max-action + sum-action]), we rescale the output of the
heuristic and no-battery baseline to ensure that the environment
can handle the actions coming from all the implementations in a
similar way. Similarly, a no-battery baseline only requires the power
generated at the current time step, but we still send the complete
observation as its input (the same as the input to RL algorithms).

4 IMPLEMENTATIONS
4.1 No battery baseline

Our first baseline is a scenario with no battery — all the power
generated at every time step is sold to the grid.

4.2 Heuristic Algorithm

We introduce a simple heuristic algorithm in which decisions are
made based on price forecasts. If the average forecast price for
the next hour is less than the current price, it indicates that the
price is decreasing. Therefore, we decide to sell all the power gener-
ated in the current time step and completely discharge the battery.
However, if the average forecast price for the next one hour is
greater than the current price, it indicates that the price is increas-
ing. Therefore, we completely charge the battery and only the
additional power generated is sold.

4.3 Linear Programming

As a third baseline, we approached the optimization problem pre-
sented in Section3 with linear programming using the PuLP library.
The performance (measured as cumulative revenue) is slightly
worse and the run time is orders of magnitude slower compared to
our RL solution.

4.4 RL Algorithms
Twin Delayed DDPG (TD3): TD3 [9] is an off-policy algorithm
for continuous control tasks. It builds on DDPG [16] and uses the

following techniques to make the RL algorithm more stable: (1)
Clipped Double Q-learning which maintains two Q-estimators and
updates the loss functions using the smaller Q-value to avoid over-
estimation bias (2) delayed policy and target network updates com-
pared to Q-function update (3) target policy smoothing as regular-
ization by introducing noise to the target action value.

4.5 Imitation Learning Algorithms and RLHF

As an example of learning from human demonstrations, we train
a policy network to imitate the behavior of an RL agent using
behavior cloning. Furthermore, we developed a framework to con-
tinuously solicit human feedback and preferences for the actions
and train a reward model that is used to further fine-tune the policy
model. This is very similar to how the large language models (LLMs)
are updated in some of the latest work.

5 EXPERIMENTS

As shown in the figure, we compared the performance of our RL
algorithm with other baselines on the real data from March 2023
to March 2024. In all the cases with varying noise on the forecast
prices, the RL algorithm outperformed the other baselines.

6 CONCLUSION

In this work, we reviewed the current state of the art of BESS
optimization techniques and highlighted the need for better frame-
works to take human demonstrations and feedback into account
and proposed a novel MDP framework and benchmarked heuristic,
linear programming, and reinforcement learning algorithms. We
demonstrated that RL algorithms generate more revenue compared
to other approaches. We advocate for the widespread adoption of
our formulation as the benchmark for future research endeavors
and industrial applications, as it lays a solid foundation for the
promotion of advancements in sustainable energy management
practices. More experimental results, data generation methods, real
data sources, and other information can be found on our project
page https://ai-r.com/research/bessrl
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